
Journal of Global Optimization 28: 319–337, 2004. 319
© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

On necessary conditions for infinite-dimensional
extremumproblems

FRANCO GIANNESSI1, GIANDOMENICO MASTROENI2 and AMOS
UDERZO3

1Department of Mathematics, Faculty of Sciences, University of Pisa, Via Buonarroti 2, 56127 Pisa,
Italy (e-mail: gianness@dm.unipi.it);2Department of Mathematics, Faculty of Sciences,
University of Pisa, Via Buonarroti 2, 56127 Pisa, Italy (e-mail: mastroeni@dm.unipi.it);
3Department of Statistics, Univ. of Milano, Milano, Italy (e-mail: amos.uderzo@unimib.it)

(Received and accepted 12 March 2003)

Abstract. In this paper, we carry on the analysis (introduced in [4] and developed in [2, 7]) of optim-
ality conditions for extremum problems having infinite-dimensional image, in the case of unilateral
constraints. This is done by associating to the feasible set a special multifunction. It turns out that the
classic Lagrangian multiplier functions can be factorized into a constant term and a variable one; the
former is the gradient of a separating hyperplane as introduced in [4, 5]; the latter plays the role of
selector of the above multifunction. Finally, the need of enlarging the class of Lagrangian multiplier
functions is discussed.
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1. Introduction

The use of separation arguments in the definition of optimality conditions for a
constrained extremum problem has stressed the importance of the analysis of the
image space associated to the given problem, defined as the product space where
the images of the objective and the constraining functions run. The optimality of
a feasible point is expressed by means of the disjunction of suitable subsets of the
image space and it is proved using separation techniques. One main point in the
development of the analysis is represented by the dimension of the image space,
which can be finite or infinite, according to the nature of the constraints. The finite-
dimensional case has been widely studied and many of the results obtained in
this context can be generalized to an infinite dimensional problem under suitable
additional assumptions (for example, that one of the sets that we need to separate,
has non empty interior); in Section 2 we will recall the main features of the classic
image space approach.
In the following part of the paper, we adopt a different point of view and

we analyse the possibility of associating a finite-dimensional image space to a
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general infinite-dimensional extremum problem. This is done considering the con-
straints having an infinite-dimensional image, as multifunctions with values given
by suitable subsets of a finite-dimensional space.
The existence of a selection, for the image multifunction, whose range has

an empty intersection with a suitable subset of the image space, is a necessary
and sufficient optimality condition for the given extremum problem. Under the
hypothesis of continuity of the constraint and objective functions, the selection is
defined as a weighted integral where the weights are closely related to the classic
Lagrangemultipliers. For this reason, these weights will be referred to as “selection
multipliers” and will be considered as an enlargement of the class of multipliers
associated to the problem. In the hypothesis where the selection multipliers do not
locally depend on the variable x of the problem, the classic results of Calculus of
Variations can be recovered.
We recall the main notations that will be used in the sequel.
Let the positive integers n� m� p� with p�m, the interval T �= �a�b�⊂

IR with −� < a < b < + � and the functions 
i � IR×IRn×IRn →
IR�i=0�����m, be given. Let Y be the set of all continuous functions x�t� �=
�x1�t������xn�t���t∈T , with continuous derivatives x′�t� �=�x′

1�t������x
′
n�t���

t∈T , except at most a finite number of points t at which there exist and are finite
lim
t↓t

x′�t� and lim
t↑t

x′�t�. Let us define x′�t�= lim
t↓t

x′�t�. The set Y forms a vector

space on the set of real numbers. The space Y will be equipped with the norm

��x��� �=max
t∈T

��x�t���� x∈Y �

where ��•�� denotes the Euclidean norm of IRn. Set � �=�1�����m�.
Taking for granted the results of [2], we continue the study of problem (2) of [2]
in the case of unilateral constraints only, and we consider a particular problem
belonging to the following class:

min f �x�� s.t. gi�x��0� i∈ �� x∈X� (1.1)

namely, the problem:

min f �x� �=
∫

T

0�t�x�t�� x′�t��dt� (1.2a)

subject to:


i�t�x�t�� x′�t���0� ∀t∈T� i∈ �� (1.2b)

x∈X �=�x∈Y �xi�a�=xi�b�=0� i∈ ��� (1.2c)



NECESSARY CONDITIONS FOR INFINITE-DIMENSIONAL EXTREMUM PROBLEMS 321

2. The Image Space Approach

In this section we present the main features of the image space analysis following
the approach developed in [3]. The main idea of the image space analysis is to
transform the given constrained extremum problem, into separation problems in the
image space, defined by the space where the objective and the constraint functions
run. The optimality of a feasible point is equivalent to the disjunction of suitable
subsets of the image space. We will see that the image space associated to (1.2) is
infinite-dimensional, which is the main novelty in the analysis of the image space
approach developed in this section.
Consider the function F �Y −→ IR×C�T�m, defined by
F�x� �=�f �x�−f �x��gi�x�� i∈ ��, where x∈X is a feasible point and
gi �=
i, where 
i �Y −→C�T� is now considered as a function of x, for i∈ � .
Define

��x� �=��u�v�∈ IR×C�T�m �u=f �x�−f �x�� vi =gi�x�� i∈ �� x∈X��

and

� �=��u�v�∈ IR×C�T�m �u>0�vi�0� i∈ ���

where vi�0 means that vi�t��0�∀t∈T�i∈ � .
The set ��x� and the space IR×C�T�m are called the image and the image

space associated to the problem (1.2), respectively. In the present case, the ex-
tremum problem (1.2) is defined in the infinite-dimensional space Y and possesses
an infinite-dimensional image. Anyway, there are several problems, as for example
those of isoperimetric type, that are defined in an infinite-dimensional space but
have a finite-dimensional image: for the latter problems, the analysis in the image
space, developed in the finite-dimensional case, is still valid.
The optimality of x is expressed by the disjunction of the sets��x� and �.

LEMMA 2.1. x̄ is an optimal solution for (1.2) iff

��x�∩�=� (2.1)

Proof. It is a consequence of the fact that x̄ is an optimal solution for (1.2) iff
the following system is impossible

f �x�−f �x�>0�gi�x��0� x∈X�i∈ ��

which is equivalent to (2.1). �

In order to obtain a local version of the previous lemma, it is enough to replace,
in the definition of the set ��x�, the condition "x∈X" with "x∈X∩N�x�",
where N�x� is a neighbourhood of x.
To prove directly whether ��x�∩�=∅ or not, is, in general, very difficult;

therefore, such a disjunction will be proved showing that the two sets, or the set �
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and an extension of the image depending on �, lie in two disjoint level sets of a
suitable functional; when the functional can be found linear ��x� and � will be
said “linearly separable”.
The image � may not be convex , in general, even when the given extremum

problem is convex (i.e., the functions f and −g are convex). In order to overcome
this difficulty, a regularization of the image set, called the conic extension with
respect to the cone cl� and denoted by ��x�, has been introduced in the following
form:

��x�=��x�−cl�� (2.2)

or, equivalently

��x� �=��u�v�∈ IR×C�T�m �u�f �x�−f �x�� vi�gi�x��i∈ �� x∈X���

The importance of the conic extension of the image is ensured by the following
statement:

PROPOSITION 2.1. ��x�∩�=∅ iff

��x�∩�=∅� (2.3)

Proof. It is simple to prove that it results �+cl�=�� Therefore, (2.3) is a
direct consequence of the relations

��x�−�=��x�−cl�−�=��x�−��+cl��=��x�−�� �

Hence, (2.3) is a necessary and sufficient optimality condition for the problem
(1.2).
In certain cases, it is easier to prove (2.3) because the conic extension may have

some advantageous properties that ��x� has not. In the case of convex optim-
ization, the conic extension is a convex set so that the Hahn–Banach separation
theorem can be used.

PROPOSITION 2.2. Let 
0�t�x�t��x′�t�� and −
i�t�x�t��x′�t�� be convex with
respect to the second and the third argument jointly, ∀i∈ � . Then ��x� is a convex
set.

Proof. Let �u1�v1���u2�v2�∈��x�; therefore, there exist x1�x2∈X such that

u1
�f �x�−f �x1��v1

�g�x1��u2
�f �x�−f �x2��v2

�g�x2��

where f �x�=
∫

T

0�t�x�t��x′�t��dt and g�x�=�
i�t�x�t��x′�t���i∈ ��.

We have to prove that, ∀!∈ �0�1�

!�u1�v1�+�1−!��u2�v2�∈��x�� (2.4)
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We have

!u1+�1−!�u2
�!f�x1�+�1−!�f �x2�=

!
∫

T
�
0�t�x�x′�−
0�t�x

1��x1�′��dt+

�1−!�
∫

T
�
0�t�x�x′�−
0�t�x

2��x2�′��dt=∫
T
�
0�t�x�x′�−!
0�t�x

1��x1�′�+�1−!�
0�t�x
2��x2�′��dt�∫

T
�
0�t�x�x′�−
0�t�!x1+�1−!�x2�!�x1�′ +�1−!��x2�′��dt�

where the last inequality is due to the convexity of 
0�t�·�·�.
Similarly, ∀i∈ � , we have

!v1
i +�1−!�v2

i �!gi�x
1�+�1−!�gi�x

2��gi�!x1+�1−!�x2��

taking into account that the hypotheses guarantee the convexity of the function
−g. Since X is a convex set then !x1+�1−!�x2∈X so that (2.4) holds, which
completes the proof of the Proposition. �

It is easy to show that the cone � is convex and with a nonempty interior. This
allows us to prove that the sets ��x� and �, if disjoint, are linearly separable.

THEOREM 2.1 (Linear separation). Let x be an optimal solution for (1.2) and let

0�t�x�t��x′�t�� and −
i�t�x�t��x′�t�� be convex with respect to the second and
the third argument jointly, ∀i∈ � . Then there exist a number "�0 and functions #i,
i∈ � , of bounded variation, such that �"�#i�i∈ �� �=0 and

"u+∑
i∈�

∫
T
vi�t�d#i�t��0� ∀�u�v�∈��x�� (2.5)

Proof. The proof is a consequence of the Hahn-Banach separation theorem,
taking into account that, in the considered hypotheses, ��x� and � are disjoint
convex sets, the cone � has a nonempty interior. Recalling that every continuous
linear functional h on the space C�T�m can be uniquely represented in the form

�h�y�·��=
m∑

i=1

∫
T
yi�t�d#i�t��

where #i are functions of bounded variation, for i=1�����m. Then a continuous
linear functional on IR×C�T�m takes the form

"u+
m∑

i=1

∫
T
yi�t�d#i�t�='�
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where "�'∈ IR� Without loss of generality, we can assume that

"u+
m∑

i=1

∫
T
vi�t�d#i�t��'� ∀�u�v�∈�� (2.6)

We observe that it must be '�0, since 0∈cl�, and it must be "�0 since
��u�0��u>0�⊂�. Moreover, we have

"u+
m∑

i=1

∫
T
vi�t�d#i�t��'� ∀�u�v�∈��x�� (2.7)

We have to prove that '=0.
To this end, observe that

"u+
m∑

i=1

∫
T
vi�t�d#i�t��0� ∀�u�v�∈�� (2.8)

Actually, if there exists �u∗�v∗�∈� such that

"u∗+
m∑

i=1

∫
T
v∗

i �t�d#i�t�=−( �(>0��

then, since )�u∗�v∗�∈��∀)>0, it would be

lim
)→�

")u∗+)
m∑

i=1

∫
T
v∗

i �t� d#i�t�=−��

which is against (2.6). It is immediate that (2.8) also holds ∀�u�v�∈cl�. Choose
ū=f �x�−f �x�=0 and v̄=g�x��0 so that �ū�v̄�∈��x�∩cl�. By (2.7),
we have

'�"ū+
m∑

i=1

∫
T
v̄i�t� d#i�t��0�

so that '=0. �

In the original space X, the condition (2.5) becomes

"�f �x�−f �x��+∑
i∈�

∫
T

i�t�x�t��x′�t��d#i�t��0� ∀x∈X� (2.9)

It can be shown that (2.9) is equivalent to the classic saddle point condition for the
Lagrangian function associated to the given problem (1.2).
The linear separation in the image space has been widely studied in [8] where

the image space approach has been employed in the analysis of generalized sys-
tems.
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3. The Multifunction Approach: Selection Quasi-multipliers

In the previous section, we have introduced the image associated to (1.2) by means
of the function F , defined by (2.1). In the present section, we consider the same
map as a multifunction F �Y ⇒ IR1+m, where

F�x� �=�f �x�−f �x�� ∪
t∈T


i�t�x�t��x′�t���i∈ ���. Similarly, we define

� �=��u�v�∈ IR×IRm � u>0�v�0��

F �x� is now a set, not necessarily a singleton. Thus the optimality cannot be
expressed by the disjunction of � and F�X�. It is known [2] that x̄ is a local
optimal solution for (1.2) iff

F�x� �⊂�� ∀x∈N�x̄�� (3.1)

By selecting an element from F�x� or from its convex hull, we may hope to reduce
ourselves to the scheme of [5, 6], outlined in the previous section. The previous
considerations lead to the following lemma.

LEMMA 3.1. x̄ is a local optimal solution for (1.2) iff there exists a function !�
X → IR1+m such that:

!�x�∈F�x� and !�x���� ∀x∈N�x�� (3.2)

where N�x� is a neighbourhood of x∈Y .

Proof. It is enough to observe that (3.1) is equivalent to (3.2). �

If we define

K!�x� �=��u�v�∈F�X���u�v�=!�x��x∈N�x���

then (3.2) is equivalent to

K!�x�∩�=� (3.3)

�!�x� will be called the selected image, and will play the same role as� in [5, 6].
The infinite dimensionality of the image is overcome by the selection: instead of

considering the image of (1.2), which would lead us to an infinite-dimensional im-
age space, we introduce the multifunction F , so that we have a finite-dimensional
image space, where the scheme of [5, 6] can be adopted by replacing � with
K!�x�.
Thus, by means of the selection, we can associate to the infinite-dimensional

problem (1.2) an equivalent finite-dimensional problem.

LEMMA 3.2. x̄ is a local optimal solution for (1.2) iff there exists a selection
function ! for F such that x̄ is a local minimum point of the problem:

minf �x�� s.t. !i�x��0� i=1�����m� x∈X� (3.4)

(3.4) will be called the selected problem associated to (1.2).
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Proof. x is a local minimum point of (3.4) iff the system

f �x�−f �x�>0�!i�x��0�i=1�����m� x∈N�x�

is impossible. Since, given x∈X, the first component u of the vector �u�v�∈
F�X� is uniquely defined, then necessarily it is

!0�x�=f �x�−f �x��

Then, the impossibility of the previous system is equivalent to (3.1) and, by Lemma
3.1, to the optimality of x̄. �

The function ! is a local selection of F (x) in a neighbourhood of x. A fun-
damental aspect of our analysis lies in the possibility of considering selection
functions which belong to a suitable class.
Let us analyse the case where the selection is expressed by means of a weighted

integration, namely:

!i�x�=
∫

T
+i�t�x�
i�t�x�x′�dt� i∈ �� (3.5)

where +i �T ×X → IR i∈ �� and +�=�+1�����+m�∈,� , being a given set of
parameters.
Consider the function -�X×,→ IR1+m, defined, ∀x∈X, by:

-�x�+��=
(

f �x�−f �x��
∫

T
+i�x�t�
i�t�x�x′�dt� i∈ �

)
� (3.6)

According to [2], - is called a generalized selection function, iff

F�x�⊆�⇔-�x�+�∈��∀+∈,.

+ is a selection quasi-multiplier (for short, SQM). Classically, in the literature,
the multipliers + depend only on the variable t; next example shows the need of
enlarging the class of multipliers from +i�t� to +i�t.x�.

EXAMPLE 3.1. Let us consider the problem:

min
∫

T
cosx�t�dt�x�t�=0�∀t∈T �= �0�1�� x∈Y � (3.7)

Of course, x�t�≡0 is the minimum point. The selected problem, defined by (3.4),
becomes

min
∫

T
cosx�t�dt�

∫
T
+�x�t�x�t�dt=0� x∈Y � (3.8)

where +�x�·�∈L1�T �� ∀x∈Y .
We observe that, if we choose +�x�t�=x�t�, then the selected problem (3.8) is

equivalent to (3.7).
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On the contrary, we prove that x�t�≡0 is not solution of (3.8) if + is chosen
independent on x, that is +=+�t�. Note that we have:∫

T
cosx�t�dt�1�

We look for a solution of type

x�t�=at+b� a �=0� b �=0.

Hence, we must have:∫
T
+�t�x�t�dt=a

∫
T
+�t�tdt+b

∫
T
+�t�dt=0�

We observe that a�b �=0 imply that x�t�=at+b≡0. Now, let us evaluate the
objective function in x�t�:∫

T
cos�at+b�dt= 2

a
sin

a

2
cos

a+2b
2

�

If the minimum were 1, then we should have:

sin
a

2
cos

a+2b
2

= a

2
�

By choosing a and b in such a way that

a
∫

T
+�t�tdt+b

∫
T
+�t�dt=0�

a

2
� �−1�1��

the previous equality is false. �

As a consequence of the above example, we have that the approach of [6] cannot
be extended, if the multiplier + does not depend on x� Hence, we introduce a SQM
depending on x; in this case we will obtain a necessary condition, like that of [6].
Let us analyse, more in details, the existence of selections which enjoy suitable

properties. The continuity of the constraint and objective functions ensures the
existence of a selection ! which is continuous at x.

PROPOSITION 3.1. Let x be a minimum point of (1.2), and 
i �C
1�T �→

C�T�� i=0�1�����m be continuous in N�x�. Then, the function

!�x� �=�f �x�−f �x��min
t∈T


1�t�x�t��x′�t�������min
t∈T


m�t�x�t��x′�t���

is a selection function, which is continuous in N�x�.

Proof. We have to show that the functions:

f �x�−f �x� and min
t∈T


i�t�x�t��x′�t��� i∈ ��
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are continuous in N�x�. Let x̃∈N�x�, and 0>0; we must prove the inequality:∣∣∣∫
T
�
0�t�x̃�t��x̃′�t��−
0�t�x�t��x′�t���dt

∣∣∣<0� ∀x∈U�x̃��

where U�x̃� is a neighbourhood of x̃. Since 
0 is continuous at x̃�∃2>0, such
that the inequality

sup
t∈T

�x̃�t�−x�t��<2 (3.9)

implies

sup
t∈T

�
0�t�x̃�t��x̃�t��−
0�t�x�t��x′�t���< 0

b−a
�

Hence, for each x which fulfils (3.9), we have:∣∣∣∫
T
�
0�t�x̃�t��x̃′�t��−
0�t�x�t��x′�t���dt

∣∣∣<∫
T

0

b−a
dt=0�

Let i∈ � . Consider the inequality:∣∣∣min
t∈T


i�t�x̃�t��x̃ ′�t��−min
t∈T


i�t�x�t��x′�t��
∣∣∣<0� (3.10)


0 being continuous at x̃�∃2>0, such that the inequality

sup
t∈T

�x̃�t�−x�t��<2 (3.11)

implies:

sup
t∈T

�
i�t�x̃�t��x̃′�t��−
i�t�x�t��x′�t���<0�

Let


i�t�x̃�t��x̃ ′�t��=min
t∈T


i�t�x̃�t��x̃ ′�t���


i�t
0�x�t0��x′�t0��=min

t∈T

i�t�x�t��x′�t���

We have, ∀t∈T��


i�t�x̃�t��x̃ ′�t��−
i�t�x�t��x′�t���
i�t�x̃�t��x̃ ′�t�−
i�t�x�t��x′�t��<0�

so that:


i�t�x̃�t��x̃ ′�t��<
i�t
0�x�t0��x′�t0��+0�

Similarly, ∀t∈T ,


i�t
0�x�t0��x′�t0��−
i�t�x̃�t��x̃′�t���
i�t�x�t��x′�t��−
i�t�x̃�t��x̃′�t��<0�
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so that:


i�t�x̃�t��x̃′�t��>
i�t
0�x�t0��x′�t0��−0�

Hence, for each x which fulfils (3.11), we have that (3.10) is satisfied. �

In the hypotheses of Proposition 3.1, it is possible to ensure the existence of a
continuous generalized selection belonging to the class (3.6). Actually, if we put

+i�t�x� �=ki�x�
i�t�x�x′��

where

0� if

∫
T
�
i�t�x�x′��2dt=0�

mint∈T 
i�t�x�x′�∫
T
�
i�t�x�x′��2dt

� otherwise

for i∈ � ,
then it is easy to see that the generalized selection function - defined by (3.6)

coincides with the selection function ! defined in the Proposition 3.1.
A necessary optimality condition for (1.2) will be reached by extending the

approach of [5, 6] to the selected problem (3.4), namely (1.2) where (1.2b) is
replaced by

gi�x.+i� �=
∫

T
+i�t�x�
i�t�x�x′�dt�0� i∈ � � (3.12)

As in [2, 5] the analysis will be carried out within the class of �-differentiable
functions; in the sequel the �-derivative will be always assumed to be bounded
(with respect to the 2-nd argument). Here there is a further difficulty: the �-differen-
tiability must be enjoyed by f �x� and gi�x.+i��i∈ � , and should be unsuitable
to assume it; it is more appropriate that any assumption is made on the given data

i and on the selection multiplier +i.

PROPOSITION 3.2. Let fi �X → IR�i=1�2 be �-differentiable at x=x and
let

fi�x�=fi�x�+��fi�x.z�+5i�x.z�� i=1�2

be their expansions, where ��fi�i=1�2 are the �-derivatives. Set f̃ �=f1 ·f2

and assume that:

��f̃ �x.z� �=��f1�x.z�·f2�x�+f1�x�·��f2�x.z�∈�� (3.13)

f̃ is �-differentiable at x in the direction z and its expansion is given by

f̃ �x�= f̃ �x�+��f̃ �x.z�+ 5̃�x.z�� (3.14)
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where

5̃�x.z� �=51 ·52+51 ·�f2�x�+��f2�+52�f1�x�+��f1�+��f1 ·��f2� (3.15)

Proof. The expansion of f̃ is trivially obtained from the product of the expan-
sions of f1 and f2. Because of assumption (3.13) ��f̃ is sublinear; hence we
have to prove only that limz→0 5̃/��z��=0. As z→0, obviously 51 ·52/��z��→0; the
same happens to the 2nd and 3rd terms in the RHS of (3.15), since the forms in
square brackets are bounded. The boundedness of ��f1/��z�� and lim

z→0
��f2=0

imply that��f1 ·��f2/��z��→0 as z→0. This completes the proof. �

Assumption (3.13) is fulfilled, when f1 and f2 are differentiable, since��fi�i=
1�2 are linear (in this case ��f̃ =�f ′

1�x�f2�x�+f1�x�f ′
2�x��z�, which is the

classic formula), or when ��fi�i=1�2 are not linear and fi�x��0�i=1�2.
When fi�x�<0, then f̃ may not be �-differentiable; see for instance the case
where f1�x�=�x��f2�x�=�x�−1�x∈ IR.
We will assume the �-differentiability of 
0�−
1�i∈ � with respect to the

set of 2nd and 3rd arguments, of +i with respect to the 2nd argument and that all
the hypotheses of Theorem 3.1 and 4.1 in [2] are satisfied. As a consequence we
will have the following expansion (for the sake of simplicity, in the sequel x will
be replaced merely by x):

f �x+2x�=f �x�+
∫

T
��
0�t�x�x′.2x�2x′�dt+∫

T
5


0
�t�x�x′.2x�2x′�dt� (3.16a)

gi�x+2x.+i�=gi�x.+i�+
∫

T
��7i�t�x�x′.2x�2x′�dt+

+
∫

T
57

i �t�x�x′.2x�2x′�dt�i∈ �� (3.16b)

where

7i �=+i ·
i.��7i �=��+i�t�x.2x� ·
i�t�x�x′�++i�t�x� ·��
i�t�x�x′.2x�2x′�.

57
i �=5+i

·5
i
+5+i

·�
i�t�x�x′�+��
i�+5
i
·�+i�t�x�+��+i�t�x�2x��+��+i ·��
i.

and where the pairs ���+i�5+i
�����
i�5
i

� give the expansions of +i�
i, re-
spectively. Since�� is an operator which denotes �-derivative, the use of��7i as
a symbol would be improper; this does not happen here since 7i is �-differentiable
due to Proposition 3.2. When +i and 
i are differentiable ��7i collapses to the
usual derivative of a product. If +i is constant with respect to x, so that can be de-
noted by +i�t�, then��7i =+i�t�·��
i and 57

i =5
i
·�+i�t�x�+��+i�t�x�2x���
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4. Homogeneization

For the sake of simplicity, in this section we will assume that the selection multi-
pliers (for short, SM) +i do not depend on x, but only on t, so that the selection
function ! is defined by

!i�x�=
∫

T
+i�t�
i�t�x�x′�dt� i∈ � (4.1)

for x∈N�x�, a neighbourhood of x.
Next proposition is a consequence of the above assumptions and of the results

stated in Section 3.

PROPOSITION 4.1. Assume that !i�x� be defined by (4.1), i∈ � . If the system

f �x�−f �x�>0.
i�t�x�t��x′�t���0�i∈ ��∀t∈T�x∈X∩N�x�� (4.2a)

is impossible, iff, there exists +∈, such that the following system is also im-
possible:

f �x�−f �x�>0�g�x�+��0�x∈X∩N�x� (4.2b)

where g�x.+��=�!i�x�� i∈ ��.

Proof. We observe that the impossibility of (4.2a) is equivalent to the optimality
of x, By Lemma 3.2, we have that x is optimal for (2.1) iff it is a solution of the
selected problem (3.4). Taking into account (4.1), this is, in turn, equivalent to the
impossibility of the system (4.2b). �

LEMMA 4.1 (Homogeneization) . Let 
0 and −
i�i∈ � be �-differentiable
with respect to the set of the 2nd and 3rd arguments. If x is a minimum point of
(1.2), then there exist a non-negative SM +�t�=�+i�t��i∈ ��∈C0�T �m and a
neighbourhood in the sense of closedness of order one, say N �1��x�, such that the
system (in the unknown 2x=x−x.2x′ =x′ −x′):∫

T
��
0�t�x�x′.2x�2x ′�dt<0.∫

T
+i�t�·�−�
i�t�x�x ′.2x�2x ′�dt>0� i∈ �0� (4.3)

gi�x.+i�+
∫

T
+i�t�·�−�
i�t�x�x ′.2x�2x ′�dt�0�i∈ �\�0.x∈X∩N �1��x��

is impossible, where

�0 �=
{
i∈ � �gi�x.+i�=0�

∫
T
+i�t�·5i�t�x�x′.2x�2x′�dt\≡0

}
�
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Proof. By applying Proposition 4.1 we get the existence of + such that (4.2) is
impossible. Now, ab absurdo, suppose that, at the same +=+, (4.3) be possible,
and let x̂ �=x be a solution. Then !x̂ is a solution of (4.3) ∀!∈�0�1�,
since gi�x.+i��0 and ��f ��−�
i�i∈ � are positively homogeneous (satisfy
(12a) of [3]). The assumption implies that the remainders:∫

T
5
0

dt�
∫

T
+i5idt� i∈ �

are infinitesimal of order >1 with respect to ���2x�2x′���, so that, setting ŷ=
�x̂�x̂′�� y = �x�x′� and 2y = �x̂ − x�x̂′ − x′� = �2x�2x′��∃!̂∈�0�1� such
that:

1
��!̂2y��

∫
T
5
0

�t�y.!̂2y�dt<− 1
��2y��

∫
T
��f �t�y.2y�dt�

1
��!̂2y��

∫
T
+i�t�·5i�t�y.!̂2y�dt>− 1

��2y��
∫

T
+i�t�·�−�
i�t�y.2y�dt� i∈ �0�

From these inequalities, by noting that gi�x.+i�=0�∀i∈ �0, we have:

∫
T
���
0�t�y.!̂2y�+5f �t�y.!̂2y��dt<0� (4.4a)

gi�x.+i�+
∫

T
�+i�t���−�
i�t�y.!̂2y�+5i�t�yi.!̂2y���dt>0� i∈ �0� (4.4b)

∀i∈ �\�0 either gi�x.+i�=0 and
∫

T
+i5idt≡0 or gi�x.+i�>0. In the former

case, with !̂=1, we obviously have:

gi�x.+i�+
∫

T
�+i�t���−�
i�t�y.!̂2y�+5i�t�y.!̂2y���dt�0� (4.4c)

In the latter case ∃!0∈�0�1� such that:

gi�x.+i�+
∫

T
+i�t�·�−�
i�t�y.!2y�dt>0�∀!∈�0�!0��

and thus ∃!̃∈�0�!0� such that:

1
��!̃2y��

∫
T
+i�t�·5i�t�y.!̃2y�dt�

�− 1
!0��2y��

[
gi�x.+i�+!0

∫
T
+i�t�·�−�
i�t�y.2y�dt

]
�

�− 1
!��2y��

[
gi�x.+i�+!

∫
T
+i�t�·�−�
i�t�y.2y�dt

]
� ∀!∈�0�!0��
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where the 1st inequality holds since
∫

T
+i5idt is infinitesimal of order >1 with

respect to ���2x�2x′��� and the 2nd side is fixed and negative, the 2nd inequality
holds since the 2nd side is obviously the maximum of the 3rd on �0�!0�. With
!�= !̃ it follows that:

gi�x.+i�+
∫

T
�+i�t���−�
i�t�y.!̂2y�+5i�t�y.!̂2y���dt�0� (4.4d)

Collecting all (4.4), recalling that gi�x.+i�=0�i∈ �0, and using the defini-
tion of the remainders 5i, we obtain the possibility of system (4.2), and hence the
contradiction. This completes the proof. �

The impossibility of system (4.3) can be expressed as disjunction of the two sets
of the image space associated to (1.2). To this end, introduce the sets:

�h �=��u�v�∈ IR×IRm �u>0.vi >0� i∈ �0.vi�0� i∈ �\�o�.

��+��=��u�v�∈ IR×IRm �u=−
∫

T
��f dt.vi =gi�x.+i�+

+
∫

T
+i�−�
idt�i∈ �.x∈X��

It is easily seen that the impossibility of system (4.3) holds iff

�h∩��+�=��

Note that system (4.3) is set up with the homogeneous parts of f and the selec-
tions gi and hence �h�+� represents the homogenization of the selected image
��+�.�h simply follows the changes in the types of inequalities in going from
(4.2a) to (4.3).
When 
0�
i�i∈ � are differentiable (� is replaced with its subset � of linear

elements), then (4.3) becomes:

∫
T
��9x
0�x−x�+�9x′
0�x

′ −x′��dt<0.

∫
T
+i��9x
i�x−x�+�9x′
i�x

′ −x′��dt>0� i∈ �0.

gi�x.+i�+
∫

T
+i��9x
i�x−x�+

+�9x′
i�x
′ −x′��dt�0�i∈ �\�0.x∈X∩N �1��x��
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and in this case Lemma 4.1 extends to problem (1.2) a well known Linearization
Lemma (see [1]). Note that Lemma 4.1 can be slightly sharpened by requiring
differentiability or �-differentiability only for those 
i such that gi�x.+i�=0
and continuity for the remaining ones. Lemma 4.1 can be generalized to semidif-
ferentiable functions.

5. Semistationarity

The generalization of the concept of stationary point, which is associated with that
of necessary conditions, has received much attention. The crucial point is the kind
of convergence that is required. The following definition seems to be quite general,
even if it is clear that it is not possible to handle every problem with a single kind
of convergence.

DEFINITION 1. x∈R⊆Y will be called a lower semistationary point of a
problem of type min

x∈R
f �x�, iff there exists a neighbourhood N�x� of x, such that:

liminf
x→x

f �x�−f �x�

��x−x�� �0�x∈N�x�� (5.1)

The following proposition, whose proof is in Sect. 3 of [3], is a motivation for
adopting the above definition.

PROPOSITION 5.1.

(i) If x is a minimum point of f on R, then (5.1) holds.
(ii) If R and f are convex, then a lower semistationary point of f on R is a global

minimum point, and (5.1) becomes:

f ′�x.x−x��0� ∀x∈R�

where f ′�x.z� denotes directional derivative at x in the direction z.
(iii) If f is differentiable, then (4.1) becomes:

�f ′�x��x−x��0� ∀x∈R�

which if x∈ intR, collapses to:
f ′�x�=0�

Note that, in the case of problem (1.2), f ′ denotes the variation of the functional
f � Let us introduce the function:

L�x."�)�+��="f �x�−�)g�x.+��� �"�)�∈ IR×IRm� +∈,�
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Note that, if we set )i�t� �=)i ·+i�t��L is the classic Lagrangian function asso-
ciated to (1.2); hence, here the Lagrangian multiplier is splitted into two parts: a se-
lection part, i.e., +i�t� which in a wider context becomes +i�t�x�, and a separation
part, i.e., )i.
We observe that the existence of the selection multipliers +i does not guarantee,

in general, the existence of the classic Lagrange multipliers )i�t�, i∈ � , as shown
by the following example.
Example 5.1 Let us identify (1.2) with:

min
∫

T
x�t�dt�x2�t��0�∀t∈T �= �0�1��x∈C�T��

Of course, x�t�≡0 is the unique feasible (and hence optimal) solution. The
selected problem (3.4), is

min
∫

T
x�t�dt�

∫
T
+�t�x2�t�dt�0�x∈C�T��

where +�t�∈C�T�. If we choose +�t�>0� ∀t∈T , then it is necessarily
x�t�≡0 to have x�t� admissible for the selected problem; this, therefore, turns out
to be equivalent to the given problem. It is simple to check that the selected problem
does not admit the classic finite-dimensional Lagrange multipliers )i, associated to
the separation part in the factorization of )i�t�, i∈ � .

A star as apex of a cone will denote its positive polar. Let k�+��=�0�g�x.+�� �=
�u�v�+�� a selection of the image of x. Unlike before, y �=�x�x′��y �=
�x�x�� 2y �=y−y.

LEMMMA 5.1 (Semistationarity). Let 
0 be �-differentiable and 
i�i∈ � be
(-�)-differentiable with respect to the set of 2nd and 3rd arguments at any value of
them.

(i) If ∃+∈, such that:

−�"�)�∈ ���+�−k�+��∗� (5.2)

then

liminf
x→x

L�x."�)�+�−L�x."�)�+�

��x−x�� �0� (5.3)

If lim
��2y��↓0

��
0�t�y. 2y

��2y��� and lim
��2y��↓0

�−�
i�t�y. 2y

��2y����i∈ � exist, then

the lower limit of (5.1) collapses to the ordinary limit.
(ii) If x∈ intX and 
0�
i�i∈ � are differentiable, then (i) becomes: if

−�"�)�∈ ���+�−k�+��⊥�

then

L′
x�x."�)�+�=0�
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Proof. (5.2) is equivalent to:

−�"�)�∈
{
�u∗�v∗�∈ IR×IRm �

��u∗�v∗���u−u�v�+�−v�+����0� ∀�u�v�+��∈��+�
}
�

or, by using Proposition 3.1 of [5],

��L�x.2x."�)�+�−��L�x.2x."�)�+��0� ∀x∈X� (5.4)

where

��L=
∫

T
�"��
0−

∑
i∈�

)i�−�
i�dt�

Divide both sides of (5.4) by ��2x��
and add to them:

1

��2x��5�x.2x."�)�+��= 1
��2x��

∫
T

(
"5
0

−∑
i∈�

)i5i

)
dt.

then (4.4) becomes:

1
��2x�� �L�x."�)�+�−L�x."�)�+���

1
��2x��5�x.2x."�)�+�� ∀x∈X\�x��

Now (5.3) follows, since 5/��2x��→0 as x→x. The remaining part is obvious.
(ii) Since ��+� is now affine, the polar becomes the orthogonal complement

and hence liminf collapses to lim and this is zero since both � and �must hold.�

6. Concluding Remarks

We have considered a selection approach to extremum problems having an infinite-
dimensional image.
The main feature of the proposed approach is to postpone the introduction of

infinite-dimensional arguments, to the definition of the image of the problem in a
finite-dimensional space. The infinite-dimensional nature of the problem arises in
the analysis of the existence of a well-behaved selection of the imagemultifunction.
In particular, it has been shown that the set of selection multipliers, that in general
depend on the variable x∈X (the given space), turns out to be an enlargement of
the class of the Lagrange multipliers associated to the problem.
An open question is to establish conditions that guarantee the existence of se-

lection multipliers independent on x (as supposed in Sect. 4), in order to recover,
by means of the selection theory, the classic results of the Calculus of Variations.
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